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DISTRIBUTION OF TURBULENCE CHARACTERISTICS IN A CHANNEL 

WITH INTENSIVE INJECTION 

F. F. Spiridonov UDC 532.517.4 

A large number of studies (see, e.g., [I]) have been devoted to aspects of the distribu- 
tion of flow characteristics in channels with injection. A theoretical analysis of the cor- 
responding solution of the Navier-Stokes equations for laminar flow was first made in [2]. 
Subsequent experimental studies [3-7] showed that with a turbulent flow regime, the profiles 
of the longitudinal and transverse components of the velocity vector are described well by 
limit relations (infinitely large Reynolds number for injection) in [2]. This result, evi- 
dence of the high degree of stability of the flow, can be attributed to laminarization of 
the flow as it is accelerated due to distribution of the injection in the channel [8]. Use 
of the Prandtl model to describe the distribution of the turbulence characteristics in a 
channel with injection [9] leads to relations which are inconsistent with this fact. 

Here we attempt to construct an approximate semiempirical theory to describe flow char- 
acteristics based on the (k - e)-model of turbulence. By numerically integrating the hydro- 
dynamic equations with the (k - e)-model, we calculated flow parameters in a broad range 
of injection Reynolds numbers. The results of the calculations agree well with the experi- 
mental data. 

i. We are examining a steady flow of a viscous incompressible fluid in a plane channel 
(Fig. i) at a sufficiently large distance from the impermeable left wall. Fluid of the den- 
sity p0 is injected through the permeable top wall of the channel at a constant velocity 
qb ~ The equations describing the flow and the boundary conditions appear as follows in 
dimensionless form 

wa, vE~y=--a-E+~-FkE~EE/ + -~y kR-~ ~ / '  ( i . i )  

w ~T + V .~y = _ ay + ~[z ~ ~ -~ / + ~-~y \ ! ~y ,~+~=0, 

where w and v are averaged values of the components of the velocity vector q along the axes 
z and y (see Fig. i): 

y=O: v=O=Ow/Oy; y= I: v=--l,w=O; z----O: w=v=O. (1.2) 

No conditions are imposed on the right boundary because we are studying a self-similar 
solution of system (i.i). We use the following as the scales of length, velocity, and pres- 
sure in (i.I) and (1.2): h ~ is half the width of the channel; qb ~ and p~176 Re = p~176176 
~0 is the characteristic injection Reynolds number for the problem; u ~ is the viscosity of 
the fluid (~0 = ~s + ~t 0, ~s and ~t ~ are the laminar and turbulent components). 
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It is known [2] that in the limiting case Re § ~ the solution of problem (I.i), (1.2) 

has the form 

w = . T z  c o s - y y  , v = - -  s i n - - f  y ,  (1 .3)  

In fact, as was shown in [i0], at Re _> I00 (intensive injection) the solution (1.3) satis- 
factorily approximates the exact solution of the problem (i.i), (1.2). This fact was con- 
firmed experimentally in [3-7]. 

We will pose the problem of the distribution of turbulence characteristics in the flow 
at Re § ~. The solution in this case will be based on the use of the (k - ~)-model of tur- 
bulence [ii] and Eqs. (1.3). The general transport equation in this case is written as fol- 
lows in dimensionless form: 

--"a (wq~ + Egu ( v q ) ) - o ~  F+ + a ~ u  F+ =S+,  (1 .4 )  

where 

I G - -  s ,  q,=---k,  

= ~ (I 5) 

k' oR0wV lel'] ~ 

F~ = c~k2/ (~) ,  cr k = L ~ ---- 1 ,3 .  

We chose qb ~ and h~ ~ as the scales of the kinetic turbulence energy k and the rate 
of its dissipation s. We took standard values for the constants: c~ = 0.09, cz = 1.44, 

c 2 = 1.92. Assuming that the convective terms in system (1.4) dominate the diffusive terms 
near the wall - through which intensive injection is taking place - and that the character- 
istics change much more rapidly along a normal to the wall than along the wall (8~/8z << 
8~/8y), then after some simple transformations we obtain the following from system (1.4) 

k 2 0 " " g A "2 
~v au (ku) = c .  -J v ' ( 1 . 6 )  

k 2 k3 a ~ ]2 g _ c2-E (g = eG/(c~,kD). 

Subtracting the second equation of system (1.6) from the first equation of same and 
rearranging the terms, we arrive at the relation 

(kv)C~ a~ ev = - -  ckv.f; ( 1 . 7  ) 

c = c~(c~ - -  c: ) , f  = g/u. (1 .8)  

Equation (1.7), determining the relationship between the variables k and E with known func- 
tions v = v(z, y) and f = f(z, y), can be regarded as a nonlinear differential equation in 
partial derivatives if we have information on the behavior of any of the variables. Un- 
fortunately, such information is lacking in analytical form in the present case. However, 
it can be obtained as follows in a first approximation. Taking advantage of a certain de- 
gree of arbitrariness allowed in the selection of the constants of the turbulence model when 
describing specific classes of flows, we put c 2 = i. This allows us to change over from 
(1.7) to the model equation 

a-~-y-'f" = --c/ ,  (1 .9 )  

where the quantity c has been corrected for the new value c 2 in accordance with the first 
equation of (1.8). Equation (1.9) can be formally integrated over y, which leads to 

717 



-- ckF(z, u); 
] 

F (z, ~) =- ,[ /(z, y~) <,q. 
Y 

(I.i0) 

(1.11) 

In the integration, we assumed that (e/k) = 0 and y = !. 

first equation of system (1.6) to obtain the relation ~ In = - - c F / v  . 

of the latter leads to an expression for the kinetic turbulence energy 

Now we can easily use the 

Integration 

F-c bti/C i exp ( -  cr  cb = F (~, ~i) Ic = ~ (z) v ~ dYl 
Y 

[a(z) is an arbitrary integration function]. 

( 1 . 1 2 )  

With allowance for (1.12), instead of (i.i0) we write 

e c~(z) /~1~+~ = -- exp (-- c~). (1 .13)  
u 

It should be noted that the expression for the function a = a(z) cannot be found within 
the framework of the given theory. However, in principle a(z) can be determined by correlat- 
ing the theory with well-known experimental data. 

2. We will use solution (1.3) to obtain the distribution of k and e in the flow. Evalu- 
ation of the terms in the expression for G in (1.5) leads to the form of the function g: 
g = (aw/ay) 2. Thus, f = [-(~/2)4].z 2 sin(~/2)y. By integrating this expression, we obtain 
the following from (i.ii): 

i '~ ~3 ~ 
F = ~-},. z 'c~ (2 .1 )  

Further integration leads to 

This means that instead of Eqs. 
we have 

~ ~13(z) 
O~----ln s i n ~ y ]  . (2 .2 )  

(1 .12)  and ( 1 . 1 3 ) ,  wi th  a l lowance f o r  (2 .1 )  and (2 .2)  

k = - -  a (z) Wau2VV(~ ( 2 . 3 )  

= ca  (z) W % ~ V  v(~). ( 2 . 4  ) 

Moreover, with allowance for these relations, we obtain the following for the eddy viscosity 
v t = c~k2/~ 

~t=c-~-a(z)  2 W2uVv(~). (2 .5)  

Here W = (~/2)z is the maximum longitudinal velocity in the channel section; u = cos (~/2)y 
is the profile of longitudinal velocity; V = Ivl = sin (~/2)y is the modulus of the profile 
of transverse velocity: 8(z) = W2; 7(z) = -(cW 2 + i). 

In accordance with one of the assumptions, W m i. Considering that we took c 2 = i 
as the model value, we change the sign of the coefficient c, having returned to the initial 
value c 2 = 1.92. This correction hardly changes the value of the coefficient itself, c = 
c~(c 2 - ci). Then, instead of (2.3)-(2.5) we write 

/ ~t ~2,~, 4 ~T~(~) 

~ = c~ (~) ( ~ )~ W~,~V~(~'; 

c B - -  - -  ~ ( z )  y w 2 u v  ~(') ,  a ( z )  - c ( w  ~ - 1 ) .  
' V t - -  c 

(2.6) 

(2.7) 

(2.8) 
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To determine the relation ~ = ~(z), we use the most complete experimental data available 
[7, 8]. We will examine the maximum dimensionless level of velocity fluctuations, deter- 
mined from Eq. (2.6): 

kl /2  ~ W 2 y'_cz(z)u(ym) v 8(z)/~, ( 2 . 9 )  
m : - - ~  

where Ym i s  t h e  d i s t a n c e  f rom t h e  symmetry  p l a n e  o f  t h e  c h a n n e l  t o  t h e  extremum o f  t h e  f u n c -  
t i o n  k l / 2 ( y ,  z ) .  

i t  f o l l o w s  f rom t h e  c o n d i t i o n  o f  t h e  extremum (a kl/2/ay)y=y m = 0 t h a t  Ym = S i n c e  

( 2 / ~ )  a r c t a n  [ / (cW 2 - 1 ) / 2 ]  o r ,  w i t h  a l l o w a n c e  f o r  W >> 1, t h a t  

ym ~ 2 a r c t g ( V c ~  W), ( 2 . 1 0 )  
n 

t h e n ,  by c o n s i d e r i n g  ( 2 . 1 0 ) ,  we o b t a i n  t h e  f o l l o w i n g  s i m p l i f i e d  e x p r e s s i o n  f o r  km 1/2 i n s t e a d  
o f  ( 2 . 9 ) :  

m = T W V -  2a(z)/c. (2.11) 

Analysis of the experimental data in [7, 8] shows that 

k~ 2 ~ 0.05W. ( 2 . 1 2 )  

Compar i son  o f  Eqs.  ( 2 . 1 1 )  and ( 2 . 1 2 )  l e a d s  t o  a = c o n s t  = ( - 2 c / ~ 2 ) ' 1 0  -2 .  

F i g u r e s  2 and 3 show r e s u l t s  o f  c a l c u l a t i o n  o f  t h e  r e l a t i o n s  km 1/2 = f i (W) and 8m = 
f2(W) ( s o l i d  l i n e s )  w i t h  t h e  u se  o f  t h e  v a l u e  o b t a i n e d  f o r  a ( l i n e s  2 ) .  Here ,  6 m = 1 - Ym, 
w h i l e  t h e  p l u s  s i g n s  show e x p e r i m e n t a l  r e s u l t s .  I t  i s  e v i d e n t  t h a t  t h e r e  i s  s a t i s f a c t o r y  
a g r e e m e n t  be tween  t h e  t h e o r e t i c a l  r e l a t i o n  and t h e  e x p e r i m e n t a l  d a t a  f o r  W > 30. 

In  F i g .  4 we c o n s t r u c t e d  t h e o r e t i c a l  p r o f i l e s  o f  t u r b u l e n c e  e n e r g y  ( d a s h e d  l i n e s )  in  
two c h a n n e l  s e c t i o n s :  z = 19 .3  and 10 ( l i n e s  1 and 2) .  The p l u s  s i g n s  show d a t a  f rom [ 8 ] .  
I t  i s  e v i d e n t  f rom t h e  g r a p h s  t h a t  t h e  t h e o r e t i c a l  c u r v e s  confo rm s a t i s f a c t o r i l y  t o  t h e  ex-  
p e r i m e n t a l  r e s u l t s  n e a r  t h e  c h a n n e l  w a l l  (y  = 1) up t o  t h e  extremum o f  t h e  q u a n t i t y  k 1 /2 .  
At y + 0, t h e  r e s u l t s  d i f f e r  a p p r e c i a b l y .  Th i s  d i f f e r e n c e  i s  e v i d e n t l y  a t t r i b u t a b l e  t o  t h e  
c o a r s e n e s s  o f  t h e  t h e o r e t i c a l  mode l :  d i f f u s i o n  i s  n o t  c o n s i d e r e d ,  t h e  l o n g i t u d i n a l  g r a d i -  
e n t s  o f  t h e  v a r i a b l e s  a r e  i g n o r e d  compared t o  t h e  t r a n s v e r s e  g r a d i e n t s ,  e t c .  N e v e r t h e l e s s ,  
t h e  model  q u a l i t a t i v e l y  d e s c r i b e s  t h e  phenomenon o f  f l ow l a m i n a r i z a t i o n  in  a c h a n n e l  w i t h  
i n j e c t i o n  [8]  and t h e  e v o l u t i o n  o f  t h e  t u r b u l e n c e  e n e r g y  p r o f i l e  downflow:  t h e  maximum o f  
k becomes more p r o n o u n c e d  and i s  d i s p l a c e d  t oward  t h e  c h a n n e l  w a l l .  

3. We p e r f o r m e d  n u m e r i c a l  c a l c u l a t i o n s  o f  f l ow p a r a m e t e r s  by t h e  method employed in  
[ 1 2 ] .  The h y d r o d y n a m i c  e q u a t i o n s  in  v a r i a b l e s  o f  t h e  s t r e a m  f u n c t i o n  - v o r t i c i t y  t o g e t h e r  
w i t h  t h e  e q u a t i o n s  o f  t h e  s t a n d a r d  (k - c ) - m o d e l  o f  t u r b u l e n c e  [11]  - were  i n t e g r a t e d  nu-  
m e r i c a l l y  w i t h  t h e  c o r r e s p o n d i n g  b o u n d a r y  c o n d i t i o n s  in  a r e c t a n g u l a r  r e g i o n  ( s e e  F i g .  1) 
o f  n o n u n i f o r m  g r i d s  r a n g i n g  f rom 31 x 21 t o  51 • 31. The c a l c u l a t i o n s  were  p e r f o r m e d  on 
a B~SM-6 c o m p u t e r .  The c h a r a c t e r i s t i c  R e y n o l d s  number was changed  w i t h i n  t h e  r a n g e  100 
Re ~ 3000. We found  t h a t  t h e  p r o c e s s  o f  c a l c u l a t i n g  k and c was u n s t a b l e  in  r e l a t i v e l y  long  
c h a n n e l s .  A p o s s i b l e  r e a s o n  f o r  t h i s  i s  t h e  f a c t  t h a t  t h e  model  in  [11]  was i n t e n d e d  f o r  
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the description of fully developed turbulent flows. Thus, we henceforth used a modified 
form of the (k - g)-model from [13] which allowed us to consider possible laminarization 
of the flow as a result of its acceleration due to the distributed mass supply from the chan- 
nel walls. In this case, the calculations were stable. The profiles of the calculated ve- 
locity-vector components agree well with Eqs. (1.3). Lines i in Figs. 2 and 3 show the com- 
putational relations km I/2 = kmZ/2(W) and 6 m = 6m(W) for a comparison with the theoretical 
and experimental results. The computed profiles k I/2 = kz/2(y) are shownin Fig. 4 (solid 
lines). It can be seen from the graphs that the calculated data agree better with the ex- 
perimental data than does the theoretical data. Nevertheless, it is evident that despite 
the limitations of the proposed theory, the derived analytical relations (2.6)-(2.8) satis- 
factorily describe thedistribution of turbulence characteristics in the flow region near 
the wall and can be used to construct hydrodynamic models of actual processes such as were 
examined in [7]. 
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